
Making an Airline
Delay Prediction
Model

Nick Van Bergen • DSI0927 • 23 December, 2021

Problem:
Airline delays cost
the consumer
time and money.

Solution:
Use A.I. to predict
a flight will be
delayed.

Challenges:

● Large volume of data.
● Many factors can

contribute to a delay
making analysis and
predictions difficult.

Benefit:
Help a customer
plan a trip or buy
insurance!

Deployment: An App! …

Eventually!!!

Deliverables

Today: A model that
works

● Used XGBoost to find and
guess if a flight will be
delayed.

Next: A beta version of
an app.

● A web based app that can
tell you if you are likely to
be delayed.

● Stretch: a model and app
that will predict a delay
length (in bins of time) and
suggest alternatives.

Building the prediction
model .

Definitions.

1. Delay:

a. Any flight that arrives 15 later than

original scheduled arrival time.

2. Arrival:

a. Aircraft is parked, plugged into

power, brakes are armed and the

door is open.

What we want
our model to do.

Predict if a flight
will be delayed.
Yes/No

Bureau of
Transportation

statistics

Get the data! 09.17.XX

Building a prediction model in three easy steps!

Use Python and perform ETL and
cleaning to pass to our model for

predictions

Clean data

XGBoost

Model data

Getting the Data

Data set statistics.

Initial Scrape

● 6 years of flight history
starting from August 2021
to January 2016

● 68 individual CSV’s. Each
~110mb files.

● 34 variable columns

● 34,409,230 observations

Cleaning subset

● 50/50 delayed vs on-time
observations

● Random Sampling to 25%
of original population

● 2, 798, 138 observations

Data exploration goals

Intuition vs Reality

● See if our intuition holds up
to the reported
observations coming in.

● Larger airlines delayed
more than smaller airlines.

● Busier airports delayed
more than not busier
airports.

Glean any fast facts

● We want to know how data
is being presented and see
if we can make meaningful
engineered features to
improve our model’s ability
to make predictions.

Exploratory Highlights

Exploratory
Analysis
Highlights

Exploratory
Analysis
Highlights

Mostly very
short
delays

Over 24hrs

Exploratory
Analysis
Highlights

Exploratory
Analysis
Highlights

1.29M / 1.33M
delayed up to
4 hours

Exploratory
Analysis
Highlights

Avg delay
~66.5 minutes

Exploratory
Analysis
Highlights

Exploratory
Analysis
Highlights

Summer
travel period
is the busiest

Exploratory
Analysis
Highlights

Saturdays had
the fewest
delays

Exploratory
Analysis
Highlights

Airline delay
ranges

Surprised at
the quantity

Exploratory
Analysis
Highlights

Though high
absolute
frequency,
relative short
duration.

Exploratory
Analysis
Highlights

Where?

Exploratory
Analysis
Highlights

Delay
durations.

These data are rich and dense.

Our intuition is good

● Generally our intuition informs us pretty well
about where we are likely to have a delay.

○ Large, busy airports on large airlines
tended to show delays.

● There were busy travel days and months
throughout our data…but we are agnostic to
time dimensions in this analysis.

Modeling

Modeling - approach

Features
Time columns and delay metrics ignored and removed from the
feature set.

Continuous Variable
A sole continuous variable, Distance (miles).

Categorical Variables
Origin, Destination, Day of Month, Day of Week, Month, Airline resulting
in 820 dummy columns.

Modeling - Task definition

Task
Scoped to binary classification: delay or no delay predictions.

Target Variable
1 delayed flight, 0 not-delayed

Modeling- Candidates

Model candidates
Classification species of Boosted Tree algorithms and a logistic
regression.

Justification
Tabular, labeled, structured data.

Models
AdaBoost, XGBoost, Light GBM, and Logistic Regression.

Modeling- Selection: Results

XGB speed-up:

tree_method =
‘hist’

Modeling- Baseline Results

Distance
mattered most to
our model.
Followed by
temporal
descriptions

Modeling- Tuning: Test Results

Distance
mattered most to
our model.
Followed by
temporal
descriptions

Modeling- Baseline Results

Distance
mattered most to
our model.
Followed by
temporal
descriptions

Modeling- Tuning: Test Results

Distance
mattered most to
our model.
Followed by
temporal
descriptions

Model
Baseline
Results

Precision:
0.58

Recall:
0.61

F1: 0.60

Model
Tuning
Results

Precision:
0.62

Recall:
0.66

F1: 0.64

Goals for next
version

1. Continue to tune model until
desired metrics are met. EG
accuracy >=85%

2. Engineer more features and
address overfit with more
regularization.

3. Build the app.

THANK YOU

