
Making an Airline 
Delay Prediction 
Model 

Nick Van Bergen • DSI0927 • 23 December, 2021



Problem: 
Airline delays cost 
the consumer 
time and money. 



Solution: 
Use A.I. to predict 
a flight will be 
delayed.



Challenges: 

● Large volume of data. 
● Many factors can 

contribute to a delay 
making analysis and 
predictions difficult.



Benefit: 
Help a customer 
plan a trip or buy 
insurance! 



Deployment: An App! … 

Eventually!!!



Deliverables

Today: A model that 
works

● Used XGBoost to find and 
guess if a flight will be 
delayed. 

Next: A beta version of 
an app. 

● A web based app that can 
tell you if you are likely to 
be delayed. 

● Stretch: a model and app 
that will predict a delay 
length (in bins of time)  and 
suggest alternatives. 



Building the prediction 
model . 



Definitions.

1. Delay: 

a. Any flight that arrives 15 later than 

original scheduled arrival time.

2. Arrival:

a. Aircraft is parked, plugged into 

power, brakes are armed and the 

door is open. 



What we want 
our model to do.

Predict if a flight 
will be delayed. 
Yes/No



Bureau of 
Transportation 

statistics

Get the data! 09.17.XX

Building a prediction model in three easy steps!

Use Python and perform ETL and 
cleaning to pass to our model for 

predictions 

Clean data

XGBoost

Model data



Getting the Data



Data set statistics.

Initial Scrape

● 6 years of flight history 
starting from August 2021 
to January 2016

● 68 individual CSV’s. Each 
~110mb files.

● 34 variable columns

● 34,409,230 observations

Cleaning subset

● 50/50 delayed vs on-time 
observations 

● Random Sampling to 25% 
of original population

● 2, 798, 138 observations



Data exploration goals

Intuition vs Reality

● See if our intuition holds up 
to the reported 
observations coming in. 

● Larger airlines delayed 
more than smaller airlines.

● Busier airports delayed 
more than not busier 
airports. 

Glean any fast facts

● We want to know how data 
is being presented and see 
if we can make meaningful 
engineered features to 
improve our model’s ability 
to make predictions. 



Exploratory Highlights



Exploratory 
Analysis 
Highlights



Exploratory 
Analysis 
Highlights

Mostly very 
short 
delays 

Over 24hrs 



Exploratory 
Analysis 
Highlights

Exploratory 
Analysis 
Highlights

1.29M / 1.33M 
delayed up to 
4 hours



Exploratory 
Analysis 
Highlights

Avg delay 
~66.5 minutes



Exploratory 
Analysis 
Highlights

Exploratory 
Analysis 
Highlights

Summer 
travel period 
is the busiest



Exploratory 
Analysis 
Highlights

Saturdays had 
the fewest 
delays



Exploratory 
Analysis 
Highlights

Airline delay 
ranges

Surprised at 
the quantity



Exploratory 
Analysis 
Highlights

Though high 
absolute 
frequency, 
relative short 
duration.



Exploratory 
Analysis 
Highlights

Where?



Exploratory 
Analysis 
Highlights

Delay 
durations.



These data are rich and dense.

Our intuition is good

● Generally our intuition informs us pretty well 
about where we are likely to have a delay. 

○ Large, busy airports on large airlines 
tended to show delays.

● There were busy travel days and months 
throughout our data…but we are agnostic to 
time dimensions in this analysis. 



Modeling



Modeling - approach

Features
Time columns and delay metrics ignored and removed from the 
feature set. 

Continuous Variable
A sole continuous variable, Distance (miles). 

Categorical Variables
Origin, Destination, Day of Month, Day of Week, Month, Airline resulting 
in 820 dummy columns. 



Modeling - Task definition

Task
Scoped to binary classification: delay or no delay predictions. 

Target Variable
1 delayed flight, 0 not-delayed  



Modeling- Candidates

Model candidates
Classification species of Boosted Tree algorithms and a logistic 
regression. 

Justification
Tabular, labeled, structured data. 

Models
AdaBoost, XGBoost, Light GBM, and Logistic Regression. 



Modeling- Selection: Results 

XGB speed-up: 

tree_method = 
‘hist’



Modeling- Baseline Results 

Distance 
mattered most to 
our model. 
Followed by 
temporal 
descriptions 



Modeling- Tuning: Test Results 

Distance 
mattered most to 
our model. 
Followed by 
temporal 
descriptions 



Modeling- Baseline Results 

Distance 
mattered most to 
our model. 
Followed by 
temporal 
descriptions 



Modeling- Tuning: Test Results 

Distance 
mattered most to 
our model. 
Followed by 
temporal 
descriptions 



Model 
Baseline 
Results 

Precision: 
0.58

Recall:
0.61 

F1: 0.60



Model 
Tuning 
Results 

Precision: 
0.62

Recall:
0.66 

F1: 0.64



Goals for next 
version

1. Continue to tune model until 
desired metrics are met. EG 
accuracy >=85%

2. Engineer more features and 
address overfit with more 
regularization.

3. Build the app. 



THANK YOU


